MATHS DALE

Making Maths Easy

GCSE Maths Formulas

Area of a Square	(Side) ²
Perimeter of a Square	4(Side)
Area of a Rectangle	Length X Width
Perimeter of a Rectangle	2(Length + Width)
Area of a Parallelogram	base \times perpendicular height
Area of a Triangle(Right angle triangle)	base × perpendicular height
	2
Area of a Rhombus	diagonal 1 × diagonal 2
	2
Area of a Trapezium	Area= $\frac{(a+b)h}{2}$, a=top, b=base, h= height
Area of a Circle	πr^2 , r=radius
Circumference of a Circle	$2\pi r$ or πd , $r = radius$ $d=diameter$
Perimeter of a Semi Circle	πr+d, r = radius d=diameter
Area of a Kite	diagonal 1 × diagonal 2
	2
Volume of a Cube	(Side) ³
Surface Area of a Cube	6(Side) ²
Volume of a Cuboid	Length $ imes$ Width $ imes$ Height
Surface Area of a Cuboid	2(lb+bh+lh)
Volume of a Cylinder	$\pi \mathbf{r}^2 h$

MATHS DALE

Making Maths Easy

Curved Surface Area of a Cylinder	2πrh
Total Surface Area of a Cylinder	$2\pi rh+2\pi r^2$
Volume of a Cone	$\frac{1}{3} \pi r^2 h$
Curved Surface Area of a Cone	$\pi r l$, l = Slant height
Total Surface Area of a Cone	$\pi \mathbf{r} l + \pi \mathbf{r}^2$, l = Slant height
Volume of a Sphere	$\frac{4}{3} \pi r^3$
Total Surface Area of a Sphere	$4\pi r^2$
Volume of a Hemisphere	$\frac{2}{3} \pi r^3$
Curved Surface Area of a Hemisphere	$2\pi r^2$
Total Surface Area of a Hemisphere	3 πr ²
Volume of a Frustum	$\frac{1}{3} \pi h(\mathbf{R}^2 + \mathbf{Rr} + \mathbf{r}^2)$
Volume of any Prism	Area of cross-section $ imes$ Length
Volume of Pyramid with any Base	$\frac{1}{3}$ Area of cross-section(base) × Height
Pythagoras Theorem	$c^2 = a^2 + b^2$
Trigonometric Values	$Sin \Theta = \frac{opp}{Hyp}$ $Cos \Theta = \frac{Adj}{Hyp}$ $Tan \Theta = \frac{opp}{Adj}$
Area of a Triangle(Non right angle triangle)	$\frac{1}{2}$ abSinC
Sine rule	$\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}$

MATHS DALE

Making Maths Easy

Cosine rule	$a^2 = b^2 + c^2 - 2bcCosA$
Area of a Sector	$\frac{\theta}{360}\pi r^2$
Arc Length	$\frac{\Theta}{360}2\pi r$
Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Gradient of a Line	$\frac{Y2 - Y1}{X2 - X1}$
Perpendicular Gradient	$m=-\frac{1}{m}$
Midpoint of two points	$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$
Distance between two points	$\sqrt{(X2 - X1)^2 + (Y2 - Y1)^2}$
Simple Interest	S.I= $\frac{Pnr}{100}$, P=Principal value n=Time r=Interest rate
Compound Interest	C.I=P $(1 \pm \frac{r}{100})^n$, P=Principal value n=Time r=Interest rate
Speed	Speed= $\frac{Distance}{Time}$
Density	Density= <u>Mass</u> Volume
Pressure	Pressure= $\frac{Force}{Area}$